SEMISYNTHETIC β-LACTAM ANTIBIOTICS
 III. SYNTHESIS AND ANTIBACTERIAL ACTIVITY OF 7阝-[2-(2-AMINOTHIAZOL-4-YL)-2-(SUBSTITUTED CARBAMOYLMETHOXYIMINO)ACETAMIDO]CEPHALOSPORINS

Masahiro Arimoto, Takeshi Hayano, Tsunehiko Soga, Toshiyuki Yoshioka, Hiroaki Tagawa and Minoru Furukawa

Research Institute, Daiichi Seiyaku Company, Ltd., 1-16-13 Kita-kasai, Edogawa-ku, Tokyo 134, Japan
(Received for publication April 25, 1986)

Abstract

Syntheses of cephalosporins modified with a 7 β-[2-(2-aminothiazol-4-yl)-2-(substituted carbamoylmethoxyimino)acetamidol group at the C-7 position and with various hetero aromatics at the C-3 position are described. The effects of substituents on the carbamoyl group in the 7 -side chain were investigated in order to improve antibacterial activity. Some of these compounds exhibited high antibacterial activity against Gram-positive and Gramnegative bacteria, including Pseudomonas aeruginosa, as well as good resistance to β-lactamase.

In recent years, several new cephalosporin antibiotics with a broad spectrum of activity and increased activity against bacteria producing β-lactamase have been developed. ${ }^{1 \sim 3)}$ In the course of our extensive research on the modification of cephalosporin, our efforts have been focused on synthesizing new cephalosporins with enhanced activity against a variety of Gram-positive and Gram-negative bacteria including Pseudomonas aeruginosa. In the preceding paper, ${ }^{4)}$ we reported the synthesis and the antibacterial activity of 7-[2-(2-aminothiazol4 -yl)-2-(acylamino)acetamidojcephalosporin derivatives, in which the cephalosporins having a basic acyl group showed a broad spectrum and enhanced antibacterial activity, but their activities against Pseudomonas aeruginosa and their stabilities to β-lactamase were inferior to the oxyimino compounds, such as cefotaxime. As an extension of our program to improve these shortcomings, we studied cephalosporins bearing a basic carbamoyl methoxyimino group instead of a neutral methoxyimino group in the 7 -side chain of cefotaxime.

This paper describes the synthesis of the new cephalosporins represented by formula I (Fig. 1) and their in vitro antibacterial activities.

Chemistry

Most 7 β-[2-(2-aminothiazol-4-yl)-2-(substituted carbamoylmethoxyimino)acetamido]cephalosporins (I) were prepared according to the synthetic route shown in Scheme 1.

Acylation of the appropriate amino derivative (II), shown in Table 5, with bromoacetyl bromide to its bromoacetamide derivatives (III), followed by coupling with N-hydroxyphthalimide in the presence of a base afforded the derivatives IV. The treatment of IV with hydrazine hydrate gave the cor-

Scheme 1.

trit; Triphenylmethyl
responding carbamoylmethoxyamine compounds (V). The compound V20 alone, having a 2-ketopiperazinyl group as the carbamoyl group, was prepared by a different synthetic route from VII: the acid compound VIII, which was made by hydrolysis of the ester (VII), was coupled to 2-ketopiperazine by the activated ester method, followed by the removal of the trityl group of IX with hydrochloric acid to afford the desired compound (V20). Conversion of the resulting V into α-carbamoylmethoxyiminoacetic acid derivatives (\mathbf{X}) were performed smoothly by the reaction of \mathbf{V} with α-keto acid (VI). The $s y n$-isomer, alone, was isolated in all case, presumably due to the steric hindrance of the bulky carbamoyl moiety. The compounds IV and \mathbf{X} are listed in Tables 5 and 6.

The coupling of the α-oxyiminoacetic acid derivatives (\mathbf{X}) with 7 -amino cephalosporin compounds (XI) was accomplished via their activated esters (formed from N, N-dicyclohexylcarbodiimide and 1hydroxybenztriazole) or their acid chlorides (formed with VILSMEYER reagent ${ }^{5 \text { s }}$) to give the protected final compound at ice-bath temperature. The protecting groups of these compounds (XII), were generally removed with formic acid or with trifluoroacetic acid and anisole. In the case of the compound XII7, which was protected with a benzyloxycarbonyl group, a more powerful reagent, such as trifluoroacetic acid and thioanisole, was needed.

Nucleophilic displacement of the 3-acetoxy group of the compound 24 with pyridine was performed in the usual way ${ }^{8)}$ to afford the 3 -pyridinium methyl compound $\mathbf{3 0}$.

The starting materials (II6, II7, II9, II12) are new and their preparations are outlined in Scheme

Scheme 2.

trit; Triphenylmethyl, BOC; tert-butoxycarbonyl, Bzh; benzhydryl, Z; carbobenzyloxy.
2. 3-(tert-Butoxycarbonylamino)azetidine (II6) and 1-(carbobenzyloxy)-3-aminoazetidine (II7) were obtained as follows. Amination of 1-benzhydryl-3-mesyloxyazetidine (XIII) ${ }^{7,8)}$ with ammonia - ethanol gave the aminoazetidine mesylate (XIV), but only in low yield. After protection of the amino group of XIV by using 2-(tert-butoxycarbonyloxyimino)-2-phenylacetonitrile, hydrogenation in the presence of $\mathrm{Pd}-\mathrm{C}$ at low pressure to remove the benzhydryl group gave

Fig. 2.

II6. This azetidine was carbobenzyloxylated to XVI; this was followed by removal of the tert-butoxycarbonyl group with trifluoroacetic acid to give 3 -amino-1-protected azetidine (II7).

Conversion of the piperidone (XVII) to its trityl derivative (XVIII), followed by oximation and reduction by lithium aluminium hydride gave 4-amino-1-tritylpiperizine (II9). tert-Butyl 4-(carbobenzyloxy)piperazinylacetate (XXI) prepared from tert-butyl bromoacetate and 1-(carbobenzyloxy)piperazine (XX) was hydrogenated over Pd-C to give tert-butyl piperazinylacetate (II12).

Acylpiperazine derivatives $(\mathbf{1 7}, \mathbf{1 8}, 19)$ were synthesized from compound 10 (Fig. 2). When 10 was treated with potassium cyanate in acetic acid and water, the by product, $\mathbf{1 8}$, was obtained together with the desired carbamoyl derivative (17). These two cephalosporins were isolated by the HPLC method. In addition, compound 19 was prepared by acylation of $\mathbf{1 0}$ with oxamic acid chloride.

Antibacterial Activity and Discussion
The minimum inhibitory concentration (MIC) values of this series of cephalosporins against selected strains of Gram-positive and Gram-negative bacteria were determined by the standard serial two-

Table 1. Structure and antibacterial activity (MIC, $\mu \mathrm{g} / \mathrm{ml}$) of cephalosporins (I).

Compound	$\mathrm{N}_{\backslash_{B}^{\prime}}^{\prime \mathrm{A}}$	$\begin{aligned} & S . a . \\ & 209 \mathrm{P} \end{aligned}$	S.a. Smith	E.c.	En.c.	$\begin{gathered} P . a . \\ 2092 \end{gathered}$	$\underset{2131}{P . a .}$
1	$\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	12.5	3.13	0.19	1.56	25	25
2	$-N$	12.5	3.13	0.78	0.78	25	25
3	$-\sqrt{0}$	25	3.13	0.39	0.78	25	50
4	$\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$	3.13	1.56	0.39	1.56	6.25	6.25
5	$\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{NHCH}_{3}$	3.13	3.13	0.78	3.13	12.5	12.5
6		6.25	1.56	0.19	0.78	6.25	6.25
7		6.25	1.56	0.78	0.39	25	25
8		6.25	1.56	0.78	1.56	6.25	6.25
9		3.13	3.13	0.39	3.13	12.5	12.5
10		3.13	1.56	0.39	0.78	3.13	3.13
11		50	12.5	0.10	0.78	12.5	25
12		25	12.5	0.39	0.78	50	50
	axime	1.56	1.56	0.10	0.10	12.5	12.5

Abbreviations: S.a. 209P; Staphylococcus aureus 209P, S.a. Smith; Staphylococcus aureus Smith, E.c.; Escherichia coli NIHJ, En. c.; Enterobacter cloacae 12005, P.a. 2092; Pseudomonas aeruginosa 2092, P.a. 2131; Pseudomonas aeruginosa 2131.
fold agar dilution method. ${ }^{9)}$
Firstly, the C-3 position of the cephalosporins was substituted with 1-methyltetrazolylthiomethyl, and the oxime moiety of the side chain at the C-7 position was modified with several types of neutral, basic and acidic acetamido groups (refer Table 2). The effects of these substituents on the in vitro antibacterial activity of the cephalosporin were examined. The structures and activities are shown in Table 1.

Cephalosporins having the oxime moiety substituted with a neutral group ($\mathbf{1} \sim \mathbf{3}$) showed moderate activity against Staphylococcus aureus and Pseudomonas aeruginosa.

On the other hand, the activity of cephalosporins having a basic oxime moiety ($4 \sim 10$) against S. aureus and P. aeruginosa was markedly improved, but no significant change in activity was observed against Gram-negative strains except P. aeruginosa. It is very interesting that cephalosporins having a primary amine showed higher anti-pseudomonal activity than did compounds with a secondary amine at the terminus of the oxime moiety ($4 \mathrm{vs} .5,6 \mathrm{vs} .7,8 \mathrm{vs} .9$). Even so, among the compounds with basic oxyimino substituents, that with a piperazine substituent (10) (although it has no terminal primary

Table 2. Structure and antibacterial activity (MIC, $\mu \mathrm{g} / \mathrm{ml}$) of cephalosporins (I).

Compound	$\underset{209 \mathrm{P}}{S . a .}$	S.a. Smith	E.c.	En.c.	$\begin{array}{r} P . a \\ 2092 \end{array}$	$\underset{2131}{P . a .}$
13	12.5	3.13	0.78	1.56	12.5	12.5
14	12.5	1.56	0.39	0.78	25	25
15	12.5	1.56	0.19	1.56	50	50
16	12.5	3.13	0.78	0.78	6.25	6.25
17	25	6.25	0.39	1.56	25	25
18	25	3.13	0.78	0.78	50	100
19	25	6.25	0.78	6.25	50	50
20	25	3.13	0.39	0.78	12.5	12.5
	1.56	1.56	0.10	0.10	12.5	12.5

Abbreviations: See footnote in Table 1.
amine function) gave the cephalosporin with the highest activity.
Introduction of acidic substituents $(11, \mathbf{1 2)}$ into the acetamide moiety caused a significant decrease of the activity against S. aureus and P. aeruginosa.

Because of the excellent antibacterial activity, compound 10 was further modified with respect to the piperazine substituent. The results are shown in Table 2.

Introduction of the carbon chain into the piperazine ring ($\mathbf{1 3} \sim \mathbf{1 6})$ caused a decrease of the antistaphylococcal and anti-pseudomonal activity. However, non-basic compounds, which were acylated at the basic nitrogen of piperazine ($\mathbf{1 7} \sim \mathbf{1 9}$) or had ketone at the 3-position of piperazine (20), were far less active than their parent compounds (10), especially against S. aureus and P. aeruginosa. This effect on activity was attributed to the increase of lipophilicity and/or the decrease of basicity.

In this study, the compound $\mathbf{1 0}$ exhibited the best antibacterial activity against Gram-positive and Gram-negative strains including P. aeruginosa.

The stabilities of the typical compound 10 to a few β-lactamases were examined. The results shown in Table 4 indicate that this compound has good stability.

This prompted us to make further modification of the substituent at the 3-position of compound 10 in order to improve activity. Commonly used heterocyclic thiols were introduced at the 3-position. The antibacterial activities and structure are listed in Table 3.

In this modification, the (1-methyltetrazol-5-yl) thio substituent of compound $\mathbf{1 0}$ was replaced with

Table 3. Structure and antibacterial activity (MIC, $\mu \mathrm{g} / \mathrm{ml}$) of cephalosporins (I).

Abbreviations: See footnote in Table 1.
neutral, basic and acidic substituents, namely, carbamoylmethyl- (21), dimethylaminoethyl- (22) and carboxymethyl- (23) tetrazoylthiol, respectively. In all cases, a significant decrease of activity against S. aureus and P. aeruginosa was observed.

Replacement of tetrazole by a few other hetero-aromatics, thiadiazole or triazole analogs (25~29) as an isomer did not show marked improvement of the activity in comparison with the $1-$ methyl 1 H tetrazole compound 10.

Further, compared with compound 10, the acetoxymethyl derivatives (24) exhibited improved activity against Gram-negative strains other than P. aeruginosa, and similar activity against Grampositive strains.

The compound 30, in which pyridiniomethyl was substituted at the 3-position, exhibited better

Table 4. Stability of compounds $\mathbf{1 0}$ and $\mathbf{3 0}$ to β-lactamase.

β-Lactamase		Relative rate of hydrolysis				
Type ${ }^{\text {a }}$	Source	CER ${ }^{\text {b }}$	CPZ ${ }^{\text {c }}$	CTX ${ }^{\text {d }}$	Compound	
					10	30
Ia	E. cloacae GN7471	100	4.3	0.8	0.5	0.4
Ib	E. coli 1154	100	6.9	0.3	0.1	0.1
Ic	P. vulgaris GN76	100	16	0.3	6.2	5.8
Id	P. aeruginosa 2006	100	4.6	1.0	0.4	0.5

${ }^{a}$ Enzyme classification according to Richmond and Sykes. ${ }^{10)}$
${ }^{\text {b }}$ Cephaloridine. c Cefoperazone. d Cefotaxime.
antibacterial activity against a variety of Gram-positive and Gram-negative strains, including P. aeruginosa, than compound $\mathbf{1 0}$. It is well known that introduction of pyridiniomethyl at the 3-position in the cephem nucleus increases the activity of the cephem derivatives against P. aeruginosa. The strong antibacterial activity of compound 30 seemed to be caused by the presence of two basic substituents, namely, 3-pyridiniomethyl and basic acetamide moiety in the 7 -side chain. It can therefore be presumed that the basicity of cephem derivatives facilitates the penetrability of Gram-negative and Grampositive bacterial membranes by cephem antibiotics. Another favorable property of compound 30 is its good β-lactamase stability, which may be derived from the steric effect of the bulky acetamide moiety in the 7 -side chain. On the basis of these results, compound 30 , with 3 -pyridiniomethyl, was selected as a lead compound for further modification.

Experimental

Melting points were determined using a Yanagimoto MP-1 micro melting apparatus and are uncorrected. IR spectra were taken on a Hitachi 285 spectrophotometer. NMR spectra were recorded at 60 MHz on a Hitachi Perkin-Elmer R-20B and at 200 MHz on a Varian XL-200 spectrometer using TMS or sodium 2,2-dimethyl-2-silapentane-1-sulfonate (DSS) as an internal standard. Organic solvents were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and all concentrations were carried out by evaporation in vacuo.

General Procedure for the Preparation of I: A Typical Procedure is Described for the Preparation of 7β-[2-(2-Aminothiazol-4-yl)-2-(piperazino-carbonylmethoxyimino) acetamido]-3-[(1-methyl-1H-tetrazol-5-yl)thiomethyl]ceph-3-em-4-carboxylic Acid (10)

1) Preparation of 1-(Bromoacetyl)-4-(tert-butoxycarbonyl)piperazine (III10): To a stirred cold $\left(0^{\circ} \mathrm{C}\right)$ solution of 1-tert-butoxycarbonylpiperazine ($\mathrm{II} 10 ; 7.44 \mathrm{~g}, 40 \mathrm{mmol}$) and dimethylaniline (4.85 g , 40 mmol) in $\mathrm{Me}_{2} \mathrm{CO}(150 \mathrm{ml}), 8.0 \mathrm{~g}$ of bromoacetyl bromide (40 mmol) was added dropwise. After stirring for 1 hour at room temp, the mixture was evaporated and the residue was diluted with EtOAc, washed successively with 10% citric acid, $5 \% \mathrm{NaHCO}_{3}$ and brine, then dried and evaporated to afford the title compound as a brown oil $(10.8 \mathrm{~g}, 87.9 \%)$, which was used for the next step without further purification. NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.50(9 \mathrm{H}$, s, tert- Bu$), 3.5 \sim 3.8\left(8 \mathrm{H}\right.$, br s, piperazine $\left.\mathrm{CH}_{2}\right), 3.86(2 \mathrm{H}$, s, $\mathrm{CH}_{2} \mathrm{CO}$).
2) Preparation of 1-(tert-Butoxycarbonyl)-4-phthalimidoyloxyacetylpiperazine (IV10): A solution of $\mathrm{IW} 10(12.3 \mathrm{~g}, 40 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(30 \mathrm{ml})$ was added to an ice cold solution of N-hydroxyphthalimide $(6.52 \mathrm{~g}, 40 \mathrm{mmol})$ and triethylamine $(4.04 \mathrm{~g}, 40 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(100 \mathrm{ml})$. The mixture was stirred for 4 hours at room temp. After evaporation of the solvent, the residue was extracted with EtOAc, and the extract was washed successively with $5 \% \mathrm{NaHCO}_{3}$ and brine, and was then dried and concd. The residue was triturated with $\mathrm{Et}_{2} \mathrm{O}$ to give a colorless powder $(10.7 \mathrm{~g}, 69.0 \%)$: MP $177 \sim 178^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}) 1780,1730,1680 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.50(9 \mathrm{H}, \mathrm{s}$, tert- Bu), 3.6 and 3.7 (each 4 H , br s, piperazine $\left.\mathrm{CH}_{2}\right), 4.87\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CO}\right), 7.85(4 \mathrm{H}, \mathrm{s}$, phenyl).

Table 5. Melting points and yields of intermediate IV1~IV 16 (yield from II1 \sim II 16).

Various phthalimidoyloxyacetylamine derivatives IV are listed in Table 5.
3) Preparation of 1-(Aminooxyacetyl)-4-(tert-butoxycarbonyl)piperazine (V10): To a suspension of IV10 $(19.5 \mathrm{~g}, 50 \mathrm{mmol})$ in $\mathrm{EtOH}(150 \mathrm{ml})$ was added hydrazine hydrate ($3.0 \mathrm{~g}, 60 \mathrm{mmol}$), and the mixture was refluxed for 30 minutes. The cooled reaction mixture was filtered to remove the precipitate formed, and the filtrate was concd and dissolved in EtOAc, and washed successively with 5% NaHCO_{3}, brine; it was then dried and concd to give colorless crystals ($9.22 \mathrm{~g}, 71.1 \%$) : MP 128~ $129^{\circ} \mathrm{C}$; IR (KBr) $1680,1640 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.50(9 \mathrm{H}, \mathrm{s}$, tert Bu$), 3.48(8 \mathrm{H}, \mathrm{br} \mathrm{s}$, piperazine $\left.\mathrm{CH}_{2}\right), 4.40\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CO}\right), 5.96\left(2 \mathrm{H}, \mathrm{br}\right.$ s, $\left.\mathrm{NH}_{2}\right)$.
4) 2-(2-Tritylaminothiazol-4-yl)-2-(4-tert-butoxycarbonylpiperazino-carbonylmethoxyimino)acetic Acid (X10): A mixture of V10 ($2.59 \mathrm{~g}, 10 \mathrm{mmol}$) and 2-(2-tritylaminothiazol-4-yl)glyoxylic acid (VI; $4.14 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{EtOH}(200 \mathrm{ml})$ was stirred for 5 hours at room temp. The reaction mixture was concd, made acidic with 10% citric acid and extracted with CHCl_{3}. The extract was washed with $\mathrm{H}_{2} \mathrm{O}$, dried and evaporated. Trituration with $\mathrm{Et}_{2} \mathrm{O}$ afforded colorless crystals ($6.44 \mathrm{~g}, 98.2 \%$): MP $165 \sim 167^{\circ} \mathrm{C}$ (dec).

The IR and NMR data of various acetic acid (X) are listed in Table 6.
5) 7β-[2-(2-Tritylaminothiazol-4-yl)-2-(4-tert-butoxycarbonylpiperazino-carbonylmethoxyimino)-acetamido]-3-[(1-methyl-1H-tetrazol-5-yl)thiomethyl]ceph-3-em-4-carboxylic Acid (XII10) : N, N-Dicyclohexylcarbodiimide $(1.03 \mathrm{~g}, 5 \mathrm{mmol})$ was added to a mixture of $\mathrm{X} 10(3.28 \mathrm{~g}, 5 \mathrm{mmol})$ and 1hydroxybenztriazole ($0.676 \mathrm{~g}, 5 \mathrm{mmol}$) in DMF (40 ml). After 5 hours of stirring at room temp, the mixture was filtered and the filtrate was added to a stirred solution of 7β-amino-3-[(1-methyl-1 H -tetrazol-5-yl)thiomethyl]ceph-3-em-4-carboxylic acid (XI; $1.64 \mathrm{~g}, 5 \mathrm{mmol}$) and triethylamine (1.4 ml) in DMF (10 ml). The mixture was stirred for 12 hours at room temp. After evaporation of the solvent, the residue was diluted with $\mathrm{H}_{2} \mathrm{O}$, made acidic with 10% citric acid, and extracted with EtOAc. The organic layer was separated, washed with $\mathrm{H}_{2} \mathrm{O}$, dried and evaporated. Trituration of the residue with $\mathrm{Et}_{2} \mathrm{O}$ afforded the title compound as a powder $(4.60 \mathrm{~g}, 95.3 \%)$. The crude product was used

Table 6. Spectra and physical properties of compound X1~X20.

$\begin{aligned} & \text { Com- } \\ & \text { pound } \\ & \text { No. of } \mathbf{X} \end{aligned}$	$\begin{aligned} & \text { MP } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	${ }^{1} \mathrm{H}$ NMR δ value	Solvent A: CDCl_{3} B: DMSO- $d_{\text {e }}$	$\underset{\left(\mathrm{cm}^{-1}\right)}{\mathrm{IR}(\mathrm{KBr})}$
1	185 ~ 190	$\begin{aligned} & 1.13(9 \mathrm{H}, \mathrm{~s}), 3.41(4 \mathrm{H}, \mathrm{~s}), 4.70(2 \mathrm{H}, \mathrm{~s}), \\ & 6.73(1 \mathrm{H}, \mathrm{~s}), 7.3(15 \mathrm{H}, \mathrm{~s}) \end{aligned}$	B	1680, 1630, 1580
2	$134 \sim 137$	$1.7 \sim 2.2(4 \mathrm{H}, \mathrm{m}), 3.2 \sim 3.6(4 \mathrm{H}, \mathrm{m}), 4.87$ $(2 \mathrm{H}, \mathrm{s}), 6.90(1 \mathrm{H}, \mathrm{s}), 7.3(15 \mathrm{H}, \mathrm{s}), 9.10$ ($1 \mathrm{H}, \mathrm{br}$ s)	A	1740, 1600, 1530
3	170~171	$\begin{aligned} & 3.25 \sim 4.85(8 \mathrm{H}, \mathrm{~m}), 5.01(2 \mathrm{H}, \mathrm{~s}), 6.91(1 \mathrm{H}, \mathrm{~s}) \\ & 7.45(15 \mathrm{H}, \mathrm{~s}), 7.7(1 \mathrm{H}, \mathrm{~m}) \end{aligned}$	A	1630, 1600
4	177~179	$\begin{aligned} & 1.43(9 \mathrm{H}, \mathrm{~s}), 3.06(4 \mathrm{H}, \mathrm{br} s), 4.40(2 \mathrm{H}, \mathrm{~s}) \\ & 6.78(1 \mathrm{H}, \mathrm{~s}), 7.33(15 \mathrm{H}, \mathrm{~s}), 8.66(1 \mathrm{H}, \mathrm{br} \text { s }) \end{aligned}$	B	1680, 1600, 1530
5	$124 \sim 125$	$\begin{aligned} & 1.41(9 \mathrm{H}, \mathrm{~s}), 2.78(3 \mathrm{H}, \mathrm{~s}), 3.20(4 \mathrm{H}, \mathrm{br} \mathrm{~s}) \\ & 4.66(2 \mathrm{H}, \mathrm{~s}), 6.78(1 \mathrm{H}, \mathrm{~s}), 7.33(15 \mathrm{H}, \mathrm{~s}) \end{aligned}$	A	1690
6	140~145	$\begin{aligned} & 1.42(9 \mathrm{H}, \mathrm{~s}), 3.95(1 \mathrm{H}, \mathrm{br} \mathrm{~s}), 4.2 \sim 4.5(4 \mathrm{H}, \mathrm{~m}), \\ & 4.74(2 \mathrm{H}, \mathrm{~s}), 5.9(1 \mathrm{H}, \mathrm{br} \mathrm{~s}), 6.80(1 \mathrm{H}, \mathrm{~s}) \\ & 7.33(15 \mathrm{H}, \mathrm{~s}) \end{aligned}$	A	1705, 1630, 1520
7	$179 \sim 183$	$3.84(2 \mathrm{H}, \mathrm{dd}), 4.23(2 \mathrm{H}, \mathrm{t}), 4.7(1 \mathrm{H}, \mathrm{m}), 4.72$ $(2 \mathrm{H}, \mathrm{s}), 5.06(2 \mathrm{H}, \mathrm{s}), 6.87(1 \mathrm{H}, \mathrm{s}), 7.33$ ($20 \mathrm{H}, \mathrm{br}$ s)	B	1700, 1650
8	$133 \sim 137$	$\begin{aligned} & 1.2 \sim 2.2(4 \mathrm{H}, \mathrm{~m}), 1.45(9 \mathrm{H}, \mathrm{~s}), 2.7 \sim 4.7 \\ & (5 \mathrm{H}, \mathrm{~m}), 5.02(2 \mathrm{H}, \mathrm{~s}), 6.93(1 \mathrm{H}, \mathrm{~s}), 7.33 \\ & (15 \mathrm{H}, \mathrm{~s}) \end{aligned}$	A	1710, 1615
9	185 ~ 188	$1.3 \sim 1.8(6 \mathrm{H}, \mathrm{m}), 3.0(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.4(1 \mathrm{H}, \mathrm{m})$, $4.41(2 \mathrm{H}, \mathrm{br}$ s $), 6.90(1 \mathrm{H}, \mathrm{s}), 7.4(30 \mathrm{H}, \mathrm{br} \mathrm{s})$	B	1610, 1530
10	$165 \sim 167$	$\begin{aligned} & 1.46(6 \mathrm{H}, \mathrm{~s}), 3.3 \sim 3.7(8 \mathrm{H}, \mathrm{~m}), 5.15(2 \mathrm{H}, \mathrm{~s}) \text {, } \\ & 6.97(1 \mathrm{H}, \mathrm{~s}), 7.36(15 \mathrm{H}, \mathrm{~s}) \end{aligned}$	A	1745, 1690, 1600
11	136~140	$\begin{aligned} & 1.40(9 \mathrm{H}, \mathrm{~s}), 1.85 \sim 2.00(4 \mathrm{H}, \mathrm{~m}), 3.50(2 \mathrm{H}, \mathrm{~m}) \\ & 4.73(2 \mathrm{H}, \mathrm{~s}), 6.86(1 \mathrm{H}, \mathrm{~s}), 7.30(15 \mathrm{H}, \mathrm{~s}) \end{aligned}$	B	1720, 1630
12	130~133	$\begin{aligned} & 1.46(9 \mathrm{H}, \mathrm{~s}), 2.5 \sim 2.8(4 \mathrm{H}, \mathrm{~m}), 3.20(2 \mathrm{H}, \mathrm{~s}) \text {, } \\ & 3.3 \sim 3.5(2 \mathrm{H}, \mathrm{~m}), 3.5 \sim 3.8(2 \mathrm{H}, \mathrm{~m}), 4.98 \\ & (2 \mathrm{H}, \mathrm{~s}), 6.87(1 \mathrm{H}, \mathrm{~s}), 7.30(15 \mathrm{H}, \mathrm{~s}) \end{aligned}$	A	1730, 1630
13	125~130	$\begin{aligned} & 1.46(9 \mathrm{H}, \mathrm{~s}), 1.7 \sim 2.0(2 \mathrm{H}, \mathrm{~m}), 3.3 \sim 3.7 \\ & (8 \mathrm{H}, \mathrm{~m}), 5.00(2 \mathrm{H}, \mathrm{~s}), 6.90(1 \mathrm{H}, \mathrm{~s}), 7.30(15 \mathrm{H}, \mathrm{~s}) \end{aligned}$	A	1740, 1680, 1600
14	192~194	$\begin{aligned} & 2.52(3 \mathrm{H}, \mathrm{~s}), 2.77(4 \mathrm{H}, \mathrm{~m}), 3.62(4 \mathrm{H}, \mathrm{~m}), 4.67 \\ & (2 \mathrm{H}, \mathrm{~s}), 6.71(1 \mathrm{H}, \mathrm{~s}), 7.32(15 \mathrm{H}, \mathrm{~s}), 8.65(1 \mathrm{H}, \mathrm{~s}) \end{aligned}$	B	1660, 1610, 1520
15	162~164	$\begin{aligned} & 3.15(2 \mathrm{H}, \mathrm{~m}), 3.43(4 \mathrm{H}, \mathrm{~m}), 4.10(6 \mathrm{H}, \mathrm{~m}) \\ & 4.75(2 \mathrm{H}, \mathrm{~m}), 6.83(1 \mathrm{H}, \mathrm{~s}), 7.35(15 \mathrm{H}, \mathrm{~s}) \end{aligned}$	B	1640, 1530, 1490
16	158~164	$\begin{aligned} & 1.40(9 \mathrm{H}, \mathrm{~s}), 4.37(1 \mathrm{H}, \mathrm{~m}), 4.75(1 \mathrm{H}, \mathrm{~m}), 4.85 \\ & (1 \mathrm{H}, \mathrm{~m}), 6.85(1 \mathrm{H}, \mathrm{~s}), 7.32(15 \mathrm{H}, \mathrm{~s}), 8.80(1 \mathrm{H}, \mathrm{~s}) \end{aligned}$	B	1680, 1600
20	181~184	$\begin{aligned} & 3.2 \sim 3.9(4 \mathrm{H}, \mathrm{~m}), 3.9 \sim 4.2(2 \mathrm{H}, \mathrm{br} \mathrm{~s}), 4.68 \\ & (2 \mathrm{H}, \mathrm{~s}), 6.68(1 \mathrm{H}, \mathrm{~s}), 7.3(15 \mathrm{H}, \mathrm{~s}) \end{aligned}$	A	1720, 1650

without further purification.
6) Preparation of $\mathbf{1 0}$: A mixture of XII10 ($1.9 \mathrm{~g}, 2 \mathrm{mmol}$) and TFA (20 ml) and anisole (0.3 ml) was stirred for 2 hours at room temp. After evaporation of $\mathrm{TFA}, \mathrm{Et}_{2} \mathrm{O}$ was added to the residue. The precipitates were collected by filtration, washed with $\mathrm{Et}_{2} \mathrm{O}$, dissolved in a $5 \% \mathrm{NaHCO}_{3}$ solution to adjust the pH to 6 , and then subjected to column chromatography on a non-ionic adsorption resin (Diaion HP-20). The column was washed with $\mathrm{H}_{2} \mathrm{O}$ and eluted with 10% aq MeOH , followed by lyophilization of fractions containing the desired product, to afford the title compound.

Tritylaminooxyacetic acid (VIII)

A solution of ethyl tritylaminooxyacetate (VII; $2.17 \mathrm{~g}, 6 \mathrm{mmol}$) in $\mathrm{EtOH}(20 \mathrm{ml})$ and 1 N NaOH $(20 \mathrm{ml})$ was stirred for 5 hours at room temp. After evaporation of the solvent, the residue was diluted

Table 7. Spectral data of compound I.

Compound	${ }^{1} \mathrm{H}$ NMR δ value $\left(\mathrm{D}_{2} \mathrm{O}+\mathrm{DCl}\right)$							$\begin{aligned} & \operatorname{IR}(\mathrm{KBr}) \\ & \left(\mathrm{cm}^{-1}\right) \end{aligned}$
	$\begin{gathered} \mathrm{C} 2-\mathrm{CH}_{2} \\ 2 \mathrm{H}, \mathrm{ABq} \\ J=18 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} \mathrm{C} 3-\mathrm{CH}_{2} \\ 2 \mathrm{H}, \mathrm{ABq} \\ J=13 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} \mathrm{C} 6-\mathrm{H} \\ 1 \mathrm{H}, \mathrm{~d} \\ J=5 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} \mathrm{C} 7-\mathrm{H} \\ 1 \mathrm{H}, \mathrm{~d} \\ J=5 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} \text { Thiazole } \\ 5-\mathrm{H} \\ 1 \mathrm{H}, \mathrm{~s} \end{gathered}$	$\begin{gathered} \mathrm{OCH}_{2} \mathrm{CO} \\ 2 \mathrm{H}, \mathrm{~s} \end{gathered}$	Other protons	
1	3.68	4.20	5.23	5.83	7.15	4.78	$3.43(2 \mathrm{H}, \mathrm{t}), 3.70(2 \mathrm{H}, \mathrm{t}), 4.06(3 \mathrm{H}, \mathrm{s})$	1770, 1630
2	a	4.31	5.28	5.88	7.16	4.96	$2.02(4 \mathrm{H}, \mathrm{m}), 3.51(4 \mathrm{H}, \mathrm{m}), 4.13(3 \mathrm{H}, \mathrm{s})$	$1760,1620$
3	3.67	4.20	5.02	5.82	7.12	5.00	$3.69(8 \mathrm{H}, \mathrm{m}), 4.09(3 \mathrm{H}, \mathrm{m})$	1760, 1630
4	3.81	4.22	5.27	5.85	7.29	4.88	$3.20(2 \mathrm{H}, \mathrm{m}), 3.58(2 \mathrm{H}, \mathrm{m}), 4.10(3 \mathrm{H}, \mathrm{m})$	1780, 1670
5	3.79	4.22	5.29	5.87	7.39	4.88	$2.74(3 \mathrm{H}, \mathrm{s}), 3.25(2 \mathrm{H}, \mathrm{t}), 3.65(2 \mathrm{H}, \mathrm{t}), 4.10(3 \mathrm{H}, \mathrm{s})$	1770, 1660
6	3.79	a	5.28	5.84	7.29	4.92	$4.2 \sim 4.8(5 \mathrm{H}, \mathrm{m}), 4.10(3 \mathrm{H}, \mathrm{s})$	$1770,1630$
7	3.80	a	5.29	5.86	7.30	4.88	$4.10(3 \mathrm{H}, \mathrm{s}), 4.2 \sim 4.5(5 \mathrm{H}, \mathrm{m})$	$1770,1660$
8	3.76	4.22	5.27	5.83	7.28	5.10	$\begin{aligned} & 1.60,2.15(\text { each } 2 \mathrm{H}, \mathrm{~m}), 2.90,3.30 \\ & 3.5,4.0,4.50(\text { each } 1 \mathrm{H}, \mathrm{~m}), 4.09(3 \mathrm{H}, \mathrm{~s}) \end{aligned}$	1775, 1630
9	3.78	4.22	5.38	5.83	7.39	4.80	$\begin{aligned} & 1.78(2 \mathrm{H}, \mathrm{~m}), 2.16(2 \mathrm{H}, \mathrm{~m}), 3.15(2 \mathrm{H}, \mathrm{~m}) \\ & 3.50(2 \mathrm{H}, \mathrm{~m}), 4.09(3 \mathrm{H}, \mathrm{~s}), 4.40(1 \mathrm{H}, \mathrm{~m}) \end{aligned}$	1770, 1630
10	3.80	4.25	5.28	5.83	7.30	5.15	$3.19(4 \mathrm{H}, \mathrm{m}), 3.75(4 \mathrm{H}, \mathrm{m})$	1775, 1670
11	3.67	4.21	5.22	5.82	7.10	4.93	$\begin{aligned} & 1.8 \sim 2.4(4 \mathrm{H}, \mathrm{~m}), 3.55 \sim 3.62(2 \mathrm{H}, \mathrm{~m}), 4.05,(3 \mathrm{H}, \mathrm{~s}), \\ & 4.38(1 \mathrm{H}, \mathrm{~s}) \end{aligned}$	1760, 1590
12	3.66	4.20	5.11	5.82	7.10	5.00	$2.70(4 \mathrm{H}, \mathrm{m}), 3.14(2 \mathrm{H}, \mathrm{s}), 3.60(4 \mathrm{H}, \mathrm{s}), 4.05(3 \mathrm{H}, \mathrm{s})$	1760, 1600
13	3.78	4.22	5.28	5.82	7.28	5.15	$2.22(2 \mathrm{H}, \mathrm{m}), 3.44(4 \mathrm{H}, \mathrm{m}), 3.71(4 \mathrm{H}, \mathrm{m}), 4.10(3 \mathrm{H}, \mathrm{s})$	1775, 1675
14	3.70	4.20	5.26	5.83	7.28	5.12	$2.96(3 \mathrm{H}, \mathrm{s}), 3.20(4 \mathrm{H}, \mathrm{m}), 3.63(4 \mathrm{H}, \mathrm{m}), 4.08(3 \mathrm{H}, \mathrm{s})$	1780, 1640
15	3.86	4.22	5.14	5.82	7.28	5.14	$3.29(6 \mathrm{H}, \mathrm{m}), 3.74(2 \mathrm{H}, \mathrm{t}), 3.96(4 \mathrm{H}, \mathrm{m}), 4.10(3 \mathrm{H}, \mathrm{s})$	1775, 1630
16	,	4.23	5.28	5.85	7.30	5.23	$3.2 \sim 4.0(8 \mathrm{H}, \mathrm{m}), 4.50(3 \mathrm{H}, \mathrm{s}), 5.47(1 \mathrm{H}, \mathrm{s})$	1770, 1675
17	${ }^{\text {a }}$	4.20	5.22	5.82	7.12	5.01	$3.4 \sim 3.7(8 \mathrm{H}, \mathrm{m}), 4.05(3 \mathrm{H}, \mathrm{s})$	1760,1600
18	3.68	4.21	5.23	5.82	7.13	5.03	$2.14(3 \mathrm{H}, \mathrm{s}), 3.62(4 \mathrm{H}, \mathrm{m}), 3.66(4 \mathrm{H}, \mathrm{m}), 4.06(3 \mathrm{H}, \mathrm{s})$	1760, 1620
19	a	4.35	5.02	5.85	7.21	4.98	$3.2 \sim 3.8(8 \mathrm{H}, \mathrm{m}), 3.92(3 \mathrm{H}, \mathrm{s})$	1765, 1630
20	3.65	4.25	5.09	5.82	7.11	5.20	$\begin{aligned} & 3.3 \sim 3.6(2 \mathrm{H}, \mathrm{~m}), 3.7 \sim 3.9(2 \mathrm{H}, \mathrm{~m}), 4.0 \sim 4.5 \\ & (2 \mathrm{H}, \mathrm{~m}), 4.05(3 \mathrm{H}, \mathrm{~s}) \end{aligned}$	1770, 1650
21	3.64	4.30	5.26	5.82	7.26	5.12	$3.36(4 \mathrm{H}, \mathrm{m}), 3.86(4 \mathrm{H}, \mathrm{m}), 5.36(2 \mathrm{H}, \mathrm{s})$	1775, 1690
22	3.86	4.24	5.30	5.84	7.28	5.15	$3.05(6 \mathrm{H}, \mathrm{s}), 3.38(4 \mathrm{H}, \mathrm{m}), 3.86(6 \mathrm{H}, \mathrm{m})$	$1770,1680$
23	3.74	4.30	5.28	5.85	7.28	5.14	$3.36(4 \mathrm{H}, \mathrm{m}), 3.86(4 \mathrm{H}, \mathrm{m}), 5.24(2 \mathrm{H}, \mathrm{s})$	1780, 1680
24	3.60	4.94	5.29	5.91	7.16	5.05	$2.14(3 \mathrm{H}, \mathrm{s}), 3.2(4 \mathrm{H}, \mathrm{m}), 3.8(4 \mathrm{H}, \mathrm{m})$	$\begin{aligned} & 1770,1730, \\ & 1630 \end{aligned}$
25	3.70	4.32	5.28	5.80	7.30	5.14	$2.74(3 \mathrm{H}, \mathrm{s}), 3.36(4 \mathrm{H}, \mathrm{m}), 3.85(4 \mathrm{H}, \mathrm{m})$	1775, 1630
26	3.72	4.21	5.28	5.83	7.28	5.12	$3.36(4 \mathrm{H}, \mathrm{m}), 3.91(4 \mathrm{H}, \mathrm{m})$	1765, 1660
27	3.79	4.41	5.30	5.85	7.31	5.18	$3.40(4 \mathrm{H}, \mathrm{m}), 3.88(4 \mathrm{H}, \mathrm{m}), 4.74(2 \mathrm{H}, \mathrm{s})$	1770, 1660
28	3.61	${ }^{\text {a }}$	5.12	5.85	7.12	5.02	$2.85(4 \mathrm{H}, \mathrm{m}), 3.52(4 \mathrm{H}, \mathrm{m})$	1760, 1670
29	3.72	4.10	5.26	5.82	7.26	5.12	$3.36(4 \mathrm{H}, \mathrm{m}), 3.90(4 \mathrm{H}, \mathrm{m}), 3.56(3 \mathrm{H}, \mathrm{s})$	1770, 1670
30	3.48	4.51	5.32	5.94	7.18	5.06	$\begin{aligned} & 3.2 \sim 3.54(4 \mathrm{H}, \mathrm{~m}), 3.8 \sim 4.0(4 \mathrm{H}, \mathrm{~m}), 8.13(2 \mathrm{H}, \mathrm{t}) \\ & 8.62(1 \mathrm{H}, \mathrm{t}), 8.99(2 \mathrm{H}, \mathrm{~d}) \end{aligned}$	1770, 1670

[^0]with EtOAc, washed with 10% citric acid, $\mathrm{H}_{2} \mathrm{O}$, dried and concd to dryness. The residue was triturated with $\mathrm{Et}_{2} \mathrm{O}$-petroleum ether and collected by filtration to give colorless crystals ($1.92 \mathrm{~g}, 96.1 \%$) : MP 200~ $203^{\circ} \mathrm{C}$ (dec); IR (KBr) 1705, $1260 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.23\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.32(15 \mathrm{H}, \mathrm{s}$, trityl).

4-(Tritylaminooxyacetyl)-2-oxopiperazine (IX)
To an ice-cooled solution of tritylaminooxyacetic acid (VIII; $0.667 \mathrm{~g}, 2 \mathrm{mmol}$) and N -hydroxysuccinimide $(0.23 \mathrm{~g}, 2 \mathrm{mmol})$ in THF (20 ml) was added N, N-dicyclohexylcarbodiimide ($0.412 \mathrm{~g}, 2 \mathrm{mmol}$) and stirred for 2 hours at room temp. The precipitate formed was filtered off, and the filtrate was added a solution of 2-oxopiperazine $(0.20 \mathrm{~g}, 2 \mathrm{mmol})$ in DMF (5 ml) and stirred for 2 hours. The mixture was concd and extracted with EtOAc, washed with $5 \% \mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}$, dried and evaporated. The residue was triturated with $\mathrm{Et}_{2} \mathrm{O}$ to give crystals ($0.36 \mathrm{~g}, 43.4 \%$) : MP $228 \sim 230^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}) 1680$, $1645 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{DMSO}-d_{6}\right) \delta 2.9 \sim 3.5\left(4 \mathrm{H}\right.$, br s, piperazine $\left.\mathrm{CH}_{2}\right), 3.87\left(2 \mathrm{H}, \mathrm{s}\right.$, piperazine $\left.\mathrm{CH}_{2}\right), 4.40$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right), 7.29(15 \mathrm{H}, \mathrm{s}$, trityl), $7.7 \sim 8.1(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$.

2-(2-Tritylaminothiazol-4-yl)-2-(3-oxopiperazino-carbonylmethoxyimino)acetic Acid (X20)

A suspension of IX $(0.415 \mathrm{~g}, 1 \mathrm{mmol})$ in $6 \mathrm{~N} \mathrm{HCl}(4 \mathrm{ml})$ and THF (4 ml$)$ was stirred for 2 hours at room temp. After evaporation of the solvent, the residue was dissolved in $\mathrm{H}_{2} \mathrm{O}$ and washed with EtOAc. The aqueous layer was concd, adjusted to pH 6 with the ion exchange resin IRA-45 $\left(\mathrm{OH}^{-}\right)$, and filtered. The filtrate was concd to give a residue containing the oxyamine compound $\mathbf{V} \mathbf{2 0}$, which was collected and used for the next step without further purification. This residue was suspended in 2-(2-tritylamino-thiazol-4-yl)glyoxylic acid (VI; $0.207 \mathrm{~g}, 0.5 \mathrm{mmol}$) in EtOH (5 ml), and stirred overnight at room temp. After concentration, the residue was chromatographed over silica gel. Elution with $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ (2:1) gave X20 as colorless crystals ($0.088 \mathrm{~g}, 30.2 \%$): MP $181 \sim 184^{\circ} \mathrm{C}$ (dec).

3-Amino-1-benzhydrylazetidine Methansulfonate (XIV)
A solution of 1-benzhydryl-3-methansulfonylazetidine ${ }^{7,8)}$ (XIII; $2.78 \mathrm{~g}, 8.8 \mathrm{mmol}$) in 16% ammoniaMeOH solution (40 ml) was stood for 4 days at room temp. After removing the solvent, the residue was triturated with EtOAc to give colorless crystals ($0.80 \mathrm{~g}, 27.3 \%$): MP $160 \sim 165^{\circ} \mathrm{C}(\mathrm{dec}) ; \mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}+\right.$ $\mathrm{DCl}) \delta 2.83\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.53\left(5 \mathrm{H}, \mathrm{s}\right.$, azetidine CH_{2} and CH$), 5.85(1 \mathrm{H}$, s, benzhydryl CH$) 7.50(10 \mathrm{H}$, s , phenyl)

1-Benzhydryl-3-(tert-butoxycarbonylamino)azetidine (XV)

A mixture of XIV ($2.01 \mathrm{~g}, 6 \mathrm{mmol}$), 2-(tert-butoxycarbonyloxyimino)-2-phenylacetonitrile (1.63 g , $6.6 \mathrm{mmol})$ and triethylamine $(1 \mathrm{ml})$ in dioxane $(60 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$ was stirred for 2.5 hours at room temp. The reaction mixture was evaporated and the residue was dissolved with EtOAc, washed with $\mathrm{H}_{2} \mathrm{O}$, dried and evaporated to give colorless prisms ($1.91 \mathrm{~g}, 94.1 \%$) : MP $168 \sim 170^{\circ} \mathrm{C}$; IR (KBr) $3440,1705,1525 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.42(9 \mathrm{H}, \mathrm{s}$, tert-Bu$), 2.81\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.51\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, $4.25(1 \mathrm{H}, \mathrm{m}$, azetidine CH$), 4.28(1 \mathrm{H}$, s, benzhydryl CH$), 4.85(1 \mathrm{H}$, br s, NH$), 7.2 \sim 7.4(10 \mathrm{H}, \mathrm{m}$, phenyl).

3-tert-Butoxycarbonylaminoazetidine (II6)
A mixture of XV $(1.69 \mathrm{~g}, 5 \mathrm{mmol})$ and $10 \% \mathrm{Pd}-\mathrm{C}(0.4 \mathrm{~g})$ in $1 \mathrm{~N} \mathrm{HCl}(5.1 \mathrm{ml})$ and $80 \% \mathrm{EtOH}$ $(100 \mathrm{ml})$ was hydrogenated at low pressure (initial $3.85 \mathrm{~kg} / \mathrm{cm}^{2}$). After the theoretical amount of H_{2} had been absorbed, the catalyst was filtered off. The filtrate was concd and the residue was made alkaline with NaOH solution, and extracted with CHCl_{3}. The extract was washed with $\mathrm{H}_{2} \mathrm{O}$, dried and evaporated to give the title compound as a colorless powder $(0.82 \mathrm{~g}, 95.2 \%)$: MP $75 \sim 78^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}) 3330,1690 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.45(9 \mathrm{H}, \mathrm{s}$, tert- Bu$), 2.06(1 \mathrm{H}$, s, azetidine NH$), 3.50(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2}\right), 3.85\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.5(1 \mathrm{H}, \mathrm{m}$, azetidine CH$), 5.2(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$.

1-Benzyloxycarbonyl-3-(tert-butoxycarbonylamino)azetidine (XVI)
To an ice-cold solution of II6 ($0.62 \mathrm{~g}, 3.6 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ was added dropwise triethylamine $(0.6 \mathrm{ml})$ and carbobenzoxy chloride $(0.68 \mathrm{~g}, 4 \mathrm{mmol})$. After stirring for 1.5 hours at room temp, the mixture was washed with 10% citric acid, brine, and was dried and evaporated to give an oil. This oil was triturated with n-hexane to give colorless crystals ($0.92 \mathrm{~g}, 83.4 \%$): MP $103 \sim 105^{\circ} \mathrm{C}$; IR (KBr) 3350 , $1705,1665 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.45(9 \mathrm{H}, \mathrm{s}$, tert -Bu$), 3.85\left(2 \mathrm{H}\right.$, m, azetidine $\left.\mathrm{CH}_{2}\right), 4.2 \sim 4.5(3 \mathrm{H}, \mathrm{m}$, azetidine CH_{2} and CH$), 5.10\left(2 \mathrm{H}, \mathrm{s}, \mathrm{COOCH}_{2}\right), 5.2(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 7.35(5 \mathrm{H}, \mathrm{s}$, phenyl).

3-Amino-1-benzyloxycarbonylazetidine (II7)

A solution of XVI $(0.90 \mathrm{~g}, 2.9 \mathrm{mmol})$ in TFA $(10 \mathrm{ml})$ was stirred for 30 minutes at room temp. The mixture was evaporated and the residue was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and extracted with $\mathrm{H}_{2} \mathrm{O}$. The aqueous layer was separated, made alkaline with NaOH solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with brine, dried and evaporated to give a colorless oil ($0.55 \mathrm{~g}, 92.0 \%$): $\operatorname{IR}(\mathrm{KBr}) 3350,3300,1700$ cm^{-1}; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.64\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 3.6 \sim 3.9\left(3 \mathrm{H}, \mathrm{m}\right.$, azetidine CH_{2} and CH$), 4.2(2 \mathrm{H}, \mathrm{m}$, azetidine $\left.\mathrm{CH}_{2}\right), 5.10\left(2 \mathrm{H}, \mathrm{s}, \mathrm{COOCH}_{2}\right), 7.36(5 \mathrm{H}, \mathrm{s}$, phenyl).

1-Trityl-4-piperidone (XVIII)

To a mixture of 4-piperidone hydrochloride monohydrate (XVII; $4.61 \mathrm{~g}, 30 \mathrm{mmol}$) and trityl chloride ($9.2 \mathrm{~g}, 33 \mathrm{mmol}$) in 10% aq THF (60 ml), triethylamine ($6.67 \mathrm{~g}, 66 \mathrm{mmol}$) was added dropwise. After stirring for 3 hours at room temp, the mixture was evaporated. The residue was diluted with EtOAc and washed successively with $\mathrm{H}_{2} \mathrm{O}, 10 \%$ citric acid, $5 \% \mathrm{NaHCO}_{3}$, brine; then it was dried and evaporated. The residue was crystallized from EtOH to give XVIII as colorless needles $(9.02 \mathrm{~g}$ 88.1%): MP $212 \sim 214^{\circ} \mathrm{C}$; IR (KBr) 3240, $1590 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.55\left(8 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.2 \sim 7.6$ (15H, m, trityl).

1-Trityl-4-piperidone Oxime (XIX)

To a solution of XVIII $(7.65 \mathrm{~g}, 22.4 \mathrm{mmol})$ in $\mathrm{EtOH}(150 \mathrm{ml})$ was added a solution of hydroxylamine hydrochloride ($2.34 \mathrm{~g}, 34 \mathrm{mmol}$) and potassium hydroxide ($1.9 \mathrm{~g}, 34 \mathrm{mmol}$) in $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{ml})$. After refluxing for 30 minutes, the solution was concd and diluted with EtOAc, washed successively with $\mathrm{H}_{2} \mathrm{O}$, brine, and then dried and evaporated. The residue was triturated with n-hexane to afford 1-trityl-4-piperidone oxime as colorless prisms ($6.42 \mathrm{~g}, 80.4 \%$): MP $243 \sim 245^{\circ} \mathrm{C}$; IR (KBr) 3450,1710 cm^{-1}; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.4\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.7\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 7.2 \sim 7.6(15 \mathrm{H}, \mathrm{m}$, trityl).

4-Amino-1-tritylpiperidine (II9)

A solution of XIX ($5.35 \mathrm{~g}, 15 \mathrm{mmol}$) in THF (50 ml) was added dropwise to a suspension of LiAlH_{4} $(1.14 \mathrm{~g}, 30 \mathrm{mmol})$ in THF $(100 \mathrm{ml})$ and refluxed for 1 hour. After this solution was chilled a mixture of $\mathrm{H}_{2} \mathrm{O}(1.14 \mathrm{ml})$ and THF $(10 \mathrm{ml})$ was added dropwise to it, and this was followed by the addition of $15 \% \mathrm{NaOH}(1.14 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(3.42 \mathrm{ml})$. The precipitate was filtered off, and the filtrate was concd. The residue was extracted with EtOAc, and extract was washed with $\mathrm{H}_{2} \mathrm{O}$, dried and evaporated to give an oil $(4.86 \mathrm{~g}, 94.6 \%)$. IR (KBr) $3400,1735,1590 \mathrm{~cm}^{-1} ; \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.4 \sim 1.8\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ and $\left.\mathrm{NH}_{2}\right), 2.5(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.0\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 7.2 \sim 7.6(15 \mathrm{H}, \mathrm{m}$, trityl).

4-Benzyloxycarbonyl-1-tert-butoxycarbonylmethylpiperazine (XXI)

To a solution of 1-benzyloxycarbonylpiperazine ($\mathbf{X X} ; 4.4 \mathrm{~g}, 20 \mathrm{mmol}$) and triethylamine (2.7 ml), tert-butyl bromoacetate ($3.67 \mathrm{~g}, 19 \mathrm{mmol}$) was added dropwise with ice-cooling. The mixture was stirred for 1 hour at room temp and concd. The residue was dissolved in EtOAc, washed with $\mathrm{H}_{2} \mathrm{O}$, dried and evaporated to give an oil $(5.8 \mathrm{~g}, 91.3 \%)$. NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.47(9 \mathrm{H}, \mathrm{s}$, tert- Bu$), 2.55(4 \mathrm{H}$, t , $J=5 \mathrm{~Hz}$, piperazine $\left.\mathrm{CH}_{2}\right), 3.14\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{COO}\right), 3.57\left(4 \mathrm{H}, \mathrm{t}, J=5 \mathrm{~Hz}\right.$, piperazine $\left.\mathrm{CH}_{2}\right), 5.14(2 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{COOCH}_{2}\right), 7.36(5 \mathrm{H}, \mathrm{s}$, phenyl).

1-tert-Butoxycarbonylmethylpiperazine (II12)

A solution of XXI ($3.3 \mathrm{~g}, 10 \mathrm{mmol}$) in EtOH (60 ml) was hydrogenated over $10 \% \mathrm{Pd}-\mathrm{C}(1.0 \mathrm{~g})$. After the theoretically estimated amount of H_{2} had been absorbed, the catalyst was filtered off. The filtrate was concd to give an oil $(1.8 \mathrm{~g}, 93.9 \%)$. NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.49(9 \mathrm{H}, \mathrm{s}$, tert- Bu$), 2.8 \sim 3.0(4 \mathrm{H}$, m , piperazine $\left.\mathrm{CH}_{2}\right), 3.19\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{COO}\right), 3.1 \sim 3.4\left(4 \mathrm{H}\right.$, m, piperazine $\left.\mathrm{CH}_{2}\right)$.
7β-[2-(2-Aminothiazol-4-yl)-2-(4-carbamoylpiperazino-carbonylmethoxyimino)acetamido]-3-[(1-methyl-1 H-tetrazol-5-yl)thiomethyl]ceph-3-em-4-carboxylic Acid (17) and 7 β-[2-(2-Aminothiazol-4-yl)-2-(4-acetylpiperazino-carbonylmethoxyimino)acetamido]-3-(1-methyl-1H-tetrazol-5-yl) thiomethyl] ceph-3-em-4-carboxylic Acid (18)

To a solution of $\mathbf{1 0}(0.374 \mathrm{~g}, 0.6 \mathrm{mmol})$ in $\mathrm{AcOH}(7 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{ml})$ was added a solution of $\mathrm{KCNO}(0.075 \mathrm{~g}, 0.78 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{ml})$. After stirring for 2 hours at room temp, more KCNO
($0.041 \mathrm{~g}, 0.5 \mathrm{mmol}$) was added, the mixture was stirred for an additional hour, evaporated, diluted with $\mathrm{H}_{2} \mathrm{O}$, and filtered, and the filtrate was evaporated. Trituration of the residue with $\mathrm{Et}_{2} \mathrm{O}$ to afford a hygroscopic solid. This was dissolved in $5 \% \mathrm{NaHCO}_{3}$ and adjusted to pH 6 and then subjected to chromatography on a Diaion HP-20 column. The fraction containing the desired compounds was lyophilized and subjected to HPLC to give the two title compounds: $\mathbf{1 7}(0.072 \mathrm{~g})$; $\mathrm{mp} 175 \sim 190^{\circ} \mathrm{C}$ (dec) and 18 (0.053 g); mp $175 \sim 180^{\circ} \mathrm{C}$ (dec).

Compound 17

Anal Calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{12} \mathrm{O}_{7} \mathrm{~S}_{3} \cdot \mathrm{H}_{2} \mathrm{O}:$ C 38.59, H 4.12, N 24.55 .
Found: \quad C 38.48, H 4.10, N 24.17.
Compound 18
Anal Calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{11} \mathrm{O}_{7} \mathrm{~S}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$: C 40.40, H 4.28, N 22.54.
Found: \quad C 40.82, H 4.26, N 22.35.
7β-[2-(2-Aminothiazol-4-yl)-2-(4-carbamoylketopiperazino-carbamoylmethoxyimino)acetamido]-3-[(1-methyl-1 H-tetrazol-5-yl)thiomethyl]ceph-3-em-4-carboxylic Acid (19)

Oxamic acid chloride ($0.12 \mathrm{~g}, 1.1 \mathrm{mmol}$) was added to a solution of $10(0.3 \mathrm{~g}, 0.48 \mathrm{mmol})$ and bis(trimethylsilyl)acetamide (1.2 ml) in $\mathrm{CH}_{3} \mathrm{CN}(12 \mathrm{ml})$ at $-40^{\circ} \mathrm{C}$ under stirring. The mixture was stirred for another 1 hour at room temp. After evaporation of solvent, trituration with $\mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH}$ gave a solid, which was dissolved in $\mathrm{H}_{2} \mathrm{O}$ and adjusted to pH 6 with $5 \% \mathrm{NaHCO}_{3}$ and subjected to chromatography using a Diaion HP-20 column. The fraction containing the desired compound was lyophilized to give the title compound $(0.066 \mathrm{~g})$: MP $180 \sim 190^{\circ} \mathrm{C}$ (dec).
7β-[2-(2-Aminothiazol-4-yl)-2-(piperazino-carbonylmethoxyimino)acetamido]-3-pyridiniometh-ylceph-3-em-4-carboxylic Acid (30)

To a solution of $24(1.135 \mathrm{~g}, 2 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{ml})$ were added sodium iodide ($3 \mathrm{~g}, 2 \mathrm{mmol}$), $\mathrm{NaHCO}_{3}(168 \mathrm{mg}, 2 \mathrm{mmol})$ and pyridine (1 ml), and the mixture was stirred for 1 hour at $80^{\circ} \mathrm{C}$. After cooling, the mixture was poured into $\mathrm{Me}_{2} \mathrm{CO}(50 \mathrm{ml})$. The precipitate formed was collected by suction and subjected to column chromatography (Diaion HP-20). Lyophilization of the product-containing fractions afforded the title compound (470 mg): MP $165 \sim 190^{\circ} \mathrm{C}$ (dec).

The IR and NMR data of various cephalosporins (I) are listed in Table 7.

Acknowledgment

The authors wish to thank Dr. Y. Osada and the staff of the Laboratory of Microbiology and of the Analytical Section of the Research Institute of Daiichi Seiyaku Co., Ltd.

References

1) Bucourt, R.; R. Heymes, A. Lutz, L. Penasse \& J. Perronnet: Propriétés antibiotiques inattendues dans le domaine des céphalosporines. C. R. Acad. Sci. Paris, Series D 284: 1847~1849, 1977
2) Ochiai, M.; O. Aki, A. Morimoto, T. Okada \& Y. Matsushita: New cephalosporin derivatives with high antibacterial activities. Chem. Pharm. Bull. 25: 3115~3117, 1977
3) Kamimura, T.; Y. Matsumoto, N. Okada, Y. Mine, M. Nishida, S. Goto \& S. Kuwahara: Ceftizoxime (FK-749), a new parenteral cephalosporin: In vitro and in vivo antibacterial activities. Antimicrob. Agents Chemother. 16: 540~548, 1979
4) Arimoto, M.; A. Eima, T. Watanabe, H. Tagawa \& M. Furukawa: Semisynthetic β-lactam antibiotics. II. Synthesis and antibacterial activity of 7β-[2-(acylamino)-2-(2-aminothiazol-4-yl)acetamido]cephalosporins. J. Antibiotics 39: 1236~1242, 1986
5) Zaoral, M. \& Z. Arnord: A novel peptide synthesis. Tetrahedron Lett. 1960: 9~12, 1960
6) Murphy, C. F. \& J. A. Webber: Alteration of the dihydrothiazine ring moiety. Cephalosporins and penicillins. In Chemistry and Biology. Chapter 4. Ed., E. H. Flynn, pp. 135~171, Academic Press, New York, 1972
7) Anderson, Jr., A. G. \& R. Lok: The synthesis of azetidine-3-carboxylic acid. J. Org. Chem. 37: 3953~ 3955, 1972
8) Okutani, T.; T. Kaneko \& K. Masuda: Studies on azetidine derivatives. I. Synthesis of 3-substituted azetidine derivatives. Chem. Pharm. Bull. 22: 1490~1497, 1974
9) Japan Society of Chemotherapy: Determination method of MIC. Chemotherapy (Tokyo) 23: Color pages 1~2, 1975
10) Richmond, M. H. \& R. B. Sykes: β-Lactamases of gram-negative bacteria and their possible physiological role. In Advances in Microbial Physiology. Vol. 9. Eds. A. H. Rose \& D. W. Tempest, pp. 31~85, Academic Press, New York, 1973

[^0]: a It was difficult to read the δ value because the signals overlapped with those of $\mathrm{H}_{2} \mathrm{O}$ or other protons.

